Example Calculation for Percentage of Contaminant (1,2-Dichlorobenzene) emitted (X)

Reference Document: The EPA's *Models for Air Emission Rates from Superfund Remedial Actions* dated March 8, 1993 Section 4.2: Dredging

1. The Henry's Law Constant for 1,2-Dichlorobenzene from Appendix A is 1.94x10⁻² atm-m³/g-mol. Divide by R*T to convert to dimensionless units:

$$H=1.94\times10^{-2}/(8.20\times10^{-5}*298)$$

 $H=7.94\times10^{-2}$

2. The diffusivity in water (Dw) and the log of the octanol-water partition coefficient (log Kow) from Appendix A is as follows: **Dw=7.9x10**⁻⁶ and log Kow=398.1 (taking the inverse log, **Kow=3,981.1**).

Equation 4-16 (De= 0.45Dw / 0.55 + 0.30Kow) to calculate the effective diffusivity of the contaminant in sediment air pores (De).

$$De=0.45*7.9x10^{-6} / 0.55 + 0.30*3,981.1$$

De=2.97x10⁻⁹

3. Equation 4-13 (Kd=H* De * $pi^2/4$ l²) to calculate the pollution volatilization constant (Kd). The default value for depth of dredged sediment (I) assumed to be 2.5 feet (**I=76.2** centimeters).

$$Kd = 7.94 \times 10^{-2} * 2.97 \times 10^{-9} * 3.14^{2} / 4 * 76.2^{2}$$

 $Kd = 1.003 \times 10^{-13}$

4. Equation 4-11 (X=0.72(Kdt)^{1/2} to calculate the fraction of pollutant that is emitted (X). Sediment exposure time (t) assumed to be 1 day (**t=86,400** seconds).

$$X=0.72*(1.003x10^{-13}*86,400)^{1/2}$$

X=0.007%

5. Equation 4-12 ($H^*De^*t/l^2<0.25$) to validate that Equation 4-11 is valid.

3.5x10⁻⁹<0.25